¥Hashlock.

Algem
dApp

SMART
CONTRACT

Security Audit

Performed on Contracts:

Sio2Adapter.sol

MD5 Hash:c35c00ddbbb1984b35373¢c9d2aea01ca
Sio2AdapterAssetManager.sol

MD5 Hash:21e73333995f93daaf68006e36425379

Github Commit Hash:bd12f0c74b95970f49d28484ade26a9bcdf3d3ef

Platform hashlock.com.au

Table of Contents

Executive Summary
Project Context
Audit scope

Security Rating
Standardised Checks
Intended Smart Contract Functions
Code Quality

Audit Resources
Dependencies
Severity Definitions
Audit Findings
Centralisation
Conclusion

Our Methodology
Disclaimers

About Hashlock

¥Hashlock.

Hashlock Pty Ltd

O 00 N >~ b

12
12
12
13
14
42
43
44
46
47

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN
CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED
VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO
COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR
INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE
REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS
REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

¥Hashlock.

Hashlock Pty Ltd

Executive Summary

The Algem team partnered with Hashlock to conduct a security audit of their
Sio2Adapter.sol smart contract. Hashlock manually and proactively reviewed the code in
order to ensure the project’'s team and community that the deployed contracts are

secure.

Project Context

Algem is a DeFi dApp built on Astar Network that allows you to stay liquid while staking
your ASTR. Staying liquid means you can double-dip with your Astar tokens by staking

while yield farming.

Simply put, you don't have to choose between staking and yield farming with your Astar

tokens. You can do both.

Project Name: Algem
Compiler Version: "0.8.4

Website: hitps://www.algem.io/

Logo:

¥Hashlock.

Hashlock Pty Ltd

https://www.algem.io/

Visualised Context:

Project Name Launch Date
Algem TBA

Language
Solidity

Compiler Version
v*0.8.4

Token Ticker
(nASTR)

Network
Astar Network

®

(@)
8)) D

]

¥Hashlock.

Hashlock Pty Ltd

Project Visuals:

How it works FAQ Docs Blog Launch App

Liquid Staking is the
most profitable way to
earn on Astar Network
and Polkadot |

Receive one liquid nASTR token for every ASTR token '\
you stake. Then use nASTR to yield farm on Astar
Network and Polkadot to maximize your earnings.

Maximize your earnings

What is Algem

You're leaving money on the table when you stake or
yield farm. Liquid staking lets you maximize your
Algem is a DeFi dApp built on Astar Network that earnings by letting you do both.

allows you to stay liquid while staking your ASTR.

Staying liquid means you can double-dip with your

Astar tokens by staking while yield farming.

Simply put, you don't have to choose between staking
and yield farming with your Astar tokens. You can do

both. _r,_\,'lj

Get more flexibility

Liquid staking means you get total flexibility with your ASTR
tokens. More flexibility means not having to choose between
staking and yield farming.

Github Repository Getting Started Guide

¥Hashlock.

Hashlock Pty Ltd

Audit scope

We at Hashlock audited the solidity code within the Algem Project, the scope of works
included a comprehensive review of the smart contracts listed below. We tested the
smart contracts to check for their security and efficiency. These tests were undertaken
primarily through manual line by line analysis and were supported by software assisted

testing.

Contract 1

Sio2Adapter.sol

Contract 1 MD5 Hash

d215f44138a69b185b02034044f194c0

Contract 2

Sio2AdapterAssetManager.sol

Contract 2 MD5 Hash

ac6fab05d2158611e2b6df145ddb85ac

¥Hashlock.

Hashlock Pty Ltd

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts. We initially identified some
significant vulnerabilities that have since been addressed.

v

Not Secure Vulnerable Secure Hashlocked

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed
and applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in the Function list section and all identified issues can be found

in the Audit overview section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

5 High severity vulnerabilities

7 Medium severity vulnerabilities
12 Low severity vulnerabilities

3 Gas Optimisations

Caution: Hashlock’s audits do not guarantee a project’s success or ethics, and are not
liable or responsible for security. Always conduct independent research about any

project before interacting.

¥Hashlock.

Hashlock Pty Ltd

Standardised Checks

General Code Solidity/compiler version stated Passed
Checks

Consistent pragma version across each contract Passed

Outdated Solidity Version

Overflow/underflow Passed

Correct checks, effects, interaction order

Lack of check on input parameters

Function input parameters check bypass Passed

Correct Access control

Built in emergency features

Correct event logs Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability Passed
Fallback function misuse Passed

Race condition Passed

Logical vulnerability

Features claimed Passed

delegatecall() vulnerabilities Passed

Other programming issues

Code Correctly declared function visibility Passed
Specification

Correctly declared variable storage location Passed

Use keywords/functions to be deprecated Passed

Unused code

Gas “Out of Gas” Issue
Optimization

High consumption ‘for/while’ loop

¥Hashlock.

Hashlock Pty Ltd

10

High consumption ‘storage’ storage

Assert() misuse Passed

Tokenomics The maximum limit for mintage not set Passed
Risk

“Short Address” Attack Passed

"Double Spend” Attack Passed

Initial Audit Result: VULNERABLE

Revised Audit Result: PASSED

¥Hashlock.

Hashlock Pty Ltd

Intended Smart Contract Functions

Sio2Adapter.sol

- Allows users to:

Supply tokens for loan liquidity

Take out debt to borrow tokens against
their collateral

Repay debts fully or partially
Withdraw their initial collateral

Add STokens

Propose a liquidationCall

Claim rewards for protocol interaction

- Allows admins to:

Withdraw revenue earned by the protocol

Set set the maximum amount to borrow

Contract achieves this

functionality.

1"

Sio2AdapterAssetManager.sol

- Periphery contract used to:

Add and remove assets that can be
borrowed and used as collateral

Keep track of details about these assets,
including the total amount borrowed and
the amount of borrow rewards per share
Calculate health factor, available amount
of collateral to borrow with or withdraw
Conversions of denominations from and to

native decimals to standardised wei units

Contract achieves this

functionality.

¥Hashlock.

Hashlock Pty Ltd

12

Code Quality

This audit scope involves the solidity smart contracts of the Algem project, as outlined
in the Audit Scope section. All contracts, libraries and interfaces mostly follow standard
best practices and to help avoid unnecessary complexity that increases the likelihood of

exploitation, however some refactoring is required.

The code is very well commented and closely follows best practice nat-spec styling. All

comments are correctly aligned with code functionality.

Audit Resources

We were given the Algem Protocol’s smart contract code in the form of Github access.

As mentioned above, code parts are well commented. The logic is straightforward, and
therefore it is easy to quickly comprehend the programming flow as well as the complex
code logic. The comments are helpful in understanding the overall architecture of the

protocol.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

¥Hashlock.

Hashlock Pty Ltd

Severity Definitions

Description

High severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium level difficulties should be solved before
deployment, but won't result in loss of funds.

Low level vulnerabilities are areas that lack best practices
that may cause small complications in the future.

Gas Optimisations, issues and inefficiencies

¥Hashlock.

Hashlock Pty Ltd

13

14

Audit Findings

High

[H-01] Sio2Adapter#_harvestRewards - Precision loss when calculating for
accCollateralRewardsPerShare causes depositors to miss out on rewards
Description

Depending on the total amount of NASTR supplied, and the number of blocks or time
between harvesting rewards, all users who have supplied nASTR can be missing out on
rewards due to precision loss when calculating accCollateralRewardsPerShare.

Vulnerability Details

The _harvestRewards function updates the accCollateralRewardsPerShare state
variable, which is used to calculate the accrued rewards for each user that has supplied
NASTR to the adapter.

function _harvestRewards(uint256 _pendingRewards) private {
uint256 rewardsToDistribute = receivedRewards - comissionPart;

// set accumulated rewards per share for collateral asset
uint256 nastrShare = (snastrToken.balanceOf(address(this)) *
SHARES_PRECISION) / snastrToken.totalSupply();
uint256 collateralRewards = (rewardsToDistribute *
nastrShare *
COLLATERAL_REWARDS_WEIGHT) / sumOfAssetShares;
accCollateralRewardsPerShare +=
(collateralRewards * REWARDS_PRECISION) /
totalSupply;

emit HarvestRewards(msg.sender, _pendingRewards) ;

Since the value added to accCollateralRewardsPerShare is calculated by dividing
against totalSupply, there is a considerable amount of precision loss if
collateralRewards is small and totalSupply is large. This is very much the case when
users are interacting with the contract frequently, causing collateralRewards to be
small.

Proof of Concept

An example of a test that simulates precision loss is shown below.

function testHarvestRewardsPrecisionlLoss() public {
address user2 = makeAddr("user2");
nastr.mint(user2, 1e72);

uint256 depositAmount = 1_000_000 ether;
vm.prank(user) ;

¥Hashlock.

Hashlock Pty Ltd

15

adapter.supply(depositAmount) ;
uint256 colRewardsPerShareBefore = adapter.accCollateralRewardsPerShare();

//test harvest rewards
for (uint256 i = 0; i < 20; i++) {
vm.roll(block.number + 2);
vm.startPrank(user2);
nastr.approve(address(adapter), 1);
adapter.supply(1);
vm.stopPrank() ;
}
uint256 colRewardsPerShareAfter = adapter.accCollateralRewardsPerShare();
assertGt(colRewardsPerShareAfter, colRewardsPerShareBefore);

Impact

Users that supply nASTR tokens will lose out on a considerable amount of rewards or all
rewards.

Recommendation

Increase the number of decimals of the RENARDS_PRECISION constant to 1e36.
Status

Resolved

[H-02] Sio2Adapter#_updateUserRewards - increaseAssetsTotalBorrowed iS

only called per-user interaction, resulting in an outdated asset.totalBorrowed
value

Description

Sio2Adapter._updateUserRewards increases the asset.totalBorrowed value each time a
user updates their own rewards and debts. This results in an outdated
asset.totalBorrowed value, as borrowers who have not interacted with the Sio2Adapter
contract will not have their accrued debts reflected in asset.totalBorrowed.

Vulnerability Details

Sio2Adapter._updateUserRewards calls assetManager.increaseAssetsTotalBorrowed to
increase the asset.totalBorrowed value each time a user updates their own rewards,
collateral and debts.

function _updateUserRewards(address _user) private {

// update total amount of total borrowed for current asset
assetManager.increaseAssetsTotalBorrowed(assetName, debtToHarvest);

Since this happens on a per-user interaction basis, a user has to interact with the
Sio2Adapter contract to have their accrued debts reflected in asset.totalBorrowed. This
results in an outdated asset.totalBorrowed value that’s lower than the actual value.

¥Hashlock.

Hashlock Pty Ltd

The asset.totalBorrowed value is used to calculate the increases in asset.
accBorrowedRewardsPerShare and asset.accBTokensPerShare.

In Sio2AdapterAssetManager:

16

function increaseAccBorrowedRewardsPerShare(string memory _assetName, uint256
_assetRewards) external onlyAdapter {
Asset storage asset = assetInfo[_assetName];
asset.accBorrowedRewardsPerShare += _assetRewards * rewardsPrecision /
asset.totalBorrowed;

}

function increaseAccBTokensPerShare(string memory _assetName, uint256 _income)
external onlyAdapter {

Asset storage asset = assetInfo[_assetName];

asset.accBTokensPerShare += _income * rewardsPrecision / asset.totalBorrowed;

This means that the user will accrue more borrowed rewards and debt than intended.

Impact

The user will accrue a lot more borrowed rewards and debt than intended. This
vulnerability is combined together with [H-03] to amplify the impact.

Recommendation

Instead of a per-user interaction basis, the asset.totalBorrowed value should be
updated on a global basis inside _updatePools. This can simply be done with the
following code snippet:

function _updatePools() private {

// update bToken debts
for (uint256 i; i < assetslLen;) {
(l::
address assetBTokenAddress, ,
uint256 assetlLastBTokenBalance,
uint256 assetTotalBorrowed, , ,
) = assetManager.assetInfo(assets[i]); // prettier-ignore

if (assetTotalBorrowed > 0) {

uint256 bTokenBalance = IERC20Upgradeable(assetBTokenAddress)
.balanceOf (address(this));

// add missing zeros for correct calculations
bTokenBalance = assetManager.to18DecFormat(
assetBTokenAddress,
bTokenBalance

i
uint256 income;

if (bTokenBalance > assetlLastBTokenBalance) {
income = bTokenBalance - assetlLastBTokenBalance;
+ assetManager.increaseAssetsTotalBorrowed(assets[i], income);
assetManager.increaseAccBTokensPerShare(assets[i], income);
assetManager.updatelLastBTokenBalance(assets[i]);

¥Hashlock.

Hashlock Pty Ltd

}

unchecked {
++1i;
}
}

emit UpdatePools(msg.sender);

17

Remove the call from _updateUserRewards:

function _updateUserRewards(address _user) private {
User storage user = userInfo[_user];
uint256 userBAssetsLen = user.borrowedAssets.length;

// moving by borrowing assets for current user
for (uint256 i; i < userBAssetslLen;) {
(, string memory assetName, , , , , , ,
uint256 assetAccBTokensPerShare,
uint256 assetAccBorrowedRewardsPerShare // @audit make sure that this
variable is also adjusted to be 1e36
) = assetManager.assetInfo(user.borrowedAssets[i]); // prettier-ignore

// update bToken debt
uint256 debtToHarvest = (debts[_user][assetName] *
assetAccBTokensPerShare) /
rewardsPrecision -
userBTokensIncomeDebt[_user][assetName];
debts[_user][assetName] += debtToHarvest;
userBTokensIncomeDebt[_user][assetName] =
(debts[_user][assetName] * assetAccBTokensPerShare) /
rewardsPrecision;

// harvest sio2 rewards amount for each borrowed asset
user.rewards +=
(debts[_user][assetName] * assetAccBorrowedRewardsPerShare) /
rewardsPrecision -
userBorrowedRewardDebt[_user][assetName];

userBorrowedRewardDebt[_user][assetName] =
(debts[_user][assetName] * assetAccBorrowedRewardsPerShare) /
rewardsPrecision;

= // update total amount of total borrowed for current asset
= assetManager.increaseAssetsTotalBorrowed(assetName, debtToHarvest);

unchecked {
++1;

}

Status

Resolved

¥Hashlock.

Hashlock Pty Ltd

18

[H-03] Sio2Adapter#_updates - Only one user’s rewards, collateral and
debts are updated per block

Description

Sio2Adapter._updates only updates the rewards and debts of one user per block. This
results in a delay in the accrual of rewards and debts for other users, and even
potentially an indefinite DoS if that user’s transactions are being front-run.

Vulnerability Details

The _updates function checks if the current block number is greater than the last
updated block number. If it is, it updates the rewards, collateral and debts of the caller,
and then updates lastUpdatedBlock.

function _updates(address _user) private {

if (block.number > lastUpdatedBlock) {
// update collateral and debt accumulated rewards per share
_updatePools();

// update user's rewards, collateral and debt
_updateUserRewards(_user) ;

lastUpdatedBlock = block.number;

}

lastUpdatedBlock is a global state variable, such that all users who interact with
Sio2Adapter check and update the same lastUpdatedBlock value. This means that
within a block, if another user has already updated their rewards, collateral and debts,
the other users will not be able to update their rewards, collateral and debts until the
next block.

Impact

Only one user can update their rewards, collateral and debts per block. This results in a
very drastic delay in the accrual of rewards and debts for users. If the user’s
transactions are being targeted via front-running, then a DoS can occur such that the
user is never able to update their rewards and debts. As a result of this, there are
multiple impacts:

1. Pending rewards cannot be claimed until they’ve been updated. Hence, users will
be unable to claim their rewards unless they’re the first user in the block to interact
with Sio2Adapter. This is very unlikely to happen for normal users, as MEV bots will
bid to front-run and interact with Sio2Adapter first.

2. The totalSupply state variable that tracks the total amount of collateral in the
Sio2Adapter contract will be heavily inaccurate and much lower than its actual
value. See [H-04] for the impacts of this.

¥Hashlock.

Hashlock Pty Ltd

19

Recommendation

Inside the User struct, add a lastUpdatedBlock variable that stores the last updated
block number for that user.

struct User {

uint256 lastUpdatedBlock;

Check and update the lastUpdatedBlock value of the caller instead of the global
lastUpdatedBlock value before _updateUserRewards(_user) is called.

function _updates(address _user) private {
// check sio2 rewards
uint256 pendingRewards = incentivesController.getUserUnclaimedRewards(
address(this)

)

// claim sio2 rewards if there is some
if (pendingRewards > 0) _harvestRewards(pendingRewards);

if (block.number > lastUpdatedBlock) {
// update collateral and debt accumulated rewards per share

_updatePools();

lastUpdatedBlock = block.number;

if (block.number > userInfo[_user].lastUpdatedBlock) {
// update user's rewards, collateral and debt
_updateUserRewards(_user) ;

userInfo[_user].lastUpdatedBlock = block.number;

}

emit Updates(msg.sender, _user);

Status
Resolved
[H-04] Sio2AdapterAssetManager#calcEstimateUserCollateralUSD -

Incorrect estAccSTokensPerShare calculation results in an incorrect collateral
estimate and availableCollateralUsD calculation

| This finding is related to [L-11], [H-03].

Description

The estAccSTokensPerShare calculation in
Sio2AdapterAssetManager.calcEstimateUserCollateralUSD divides by
adapter.totalSupply instead of the last updated sToken balance. This results in the

¥Hashlock.

Hashlock Pty Ltd

20

estimated collateral being underestimated and the availableCollateralUSD calculation
being overestimated.

This issue is also in Sio2Adapter._updatePools and Sio2Adapter._harvestRewards.
Vulnerability Details
The issue is present in three places.

1. To calculate the estimated accumulated sTokens per share, the change in snASTR
balance is divided by the current total supply as opposed to the last updated sToken
balance.

function calcEstimateUserCollateralUSD(
address _userAddr
) public view returns (uint256 coll) {
Sio2Adapter.User memory user = adapter.getUser(_userAddr);
// get est collateral accRPS
uint256 estAccSTokensPerShare = adapter.accSTokensPerShare();
uint256 estUserCollateral = user.collateralAmount;

IERC20Upgradeable snastr = IERC20@Upgradeable(adapter.snastrToken());
if (snastr.balanceOf (address(this)) > adapter.lastSTokenBalance()) {
estAccSTokensPerShare +=
((snastr.balanceOf(address(this)) - adapter.lastSTokenBalance()) *
rewardsPrecision) /
adapter.totalSupply(); // @audit division by ‘adapter.totalSupply()"
instead of “adapter.lastSTokenBalance()"

}

estUserCollateral +=
(estUserCollateral * estAccSTokensPerShare) /
rewardsPrecision -
user .sTokensIncomeDebt ;

coll = adapter.toUSD(address(adapter.nastr()), estUserCollateral);

Outside of deposit and _withdraw, the totalSupply value is only updated whenever a
user calls _updateUserReward inside Sio2Adapter. This will overestimate the value of
estAccSTokensPerShare, as pending sTokens accrued from collateral rewards that users
have not updated are not taken into account (totalSupply < lastSTokenBalance).

2. The same issue is also in Sio2Adapter._updatePools. The accSTokensPerShare
variable is updated by dividing the change in sToken balance by the totalSupply
state variable.

function _updatePools() private {
uint256 currentSTokenBalance = snastrToken.balanceOf(address(this));
string[] memory assets = assetManager.getAssetsNames();
uint256 assetslLen = assets.length;

// if sToken balance was changed, lastSTokenBalance updates
if (currentSTokenBalance > lastSTokenBalance) {
accSTokensPerShare +=
((currentSTokenBalance - lastSTokenBalance) *
rewardsPrecision) /

¥Hashlock.

Hashlock Pty Ltd

21

‘lastSTokenBalance"®

| } |
‘} ‘

As a result, accSTokensPerShare will be a lot higher than its actual value, which means
that users will accrue a lot more collateral than intended.

‘ totalSupply; // @audit “totalSupply is used instead of

3. The same issue is also in Sio2Adapter._harvestRewards. The
accCollateralRewardsPerShare variable is updated by dividing the amount of
collateral rewards harvested by the totalSupply state variable.

function _harvestRewards(uint256 _pendingRewards) private {

// set accumulated rewards per share for collateral asset
uint256 nastrShare = (snastrToken.balanceOf(address(this)) *
SHARES_PRECISION) / snastrToken.totalSupply();
uint256 collateralRewards = (rewardsToDistribute *
nastrShare *
collateralRewardsWeight) / sumOfAssetShares;
accCollateralRewardsPerShare +=
(collateralRewards * rewardsPrecision) /
totalSupply;

emit HarvestRewards(msg.sender, _pendingRewards) ;

As a result, the accCollateralRewardsPerShare will be a lot higher than its actual value,
which means that users will accrue more collateral rewards than intended.

Impact

The return values of availableCollateralUSD will be overestimated, which will result in
users being able to borrow and withdraw more than they should be able to. This
exposes the Sio2Adapter contract to a lot more risk.

Users will accrue a lot more collateral rewards and collateral than intended.

[H-03] is combined with this vulnerability to amplify the impact further, as totalSupply
is only updated per-user interaction per-block. This results in totalSupply <<
lastSTokenBalance (totalSupply is much less than lastSTokenBalance).

Proof of Concept

To demonstrate the third issue with more collateral rewards being accrued than
intended, run the following test inside Sio2Adapter.t.sol:

function testClaimRewardsTwice() public {
vm.startPrank(user) ;
adapter.supply (16000 ether);
adapter.borrow("BUSD", 16 ether);
vm.stopPrank() ;

uint256 adapterSTokenBal = snastr.balanceOf (address(adapter));
// Simulate collateral interest being accrued

¥Hashlock.

Hashlock Pty Ltd

deal(address(snastr), address(adapter), adapterSTokenBal + 1 ether, true);
vm.startPrank(user) ;

vm.roll(100);
adapter.claimRewards() ;

vm.roll(101);
// This will revert due to underflow.
// This is because "rewardPool < rewardsToClaim’

// The reason why is because the user has accrued more rewards than it's entitled

22

to.
adapter.claimRewards() ;
vm.stopPrank() ;
}
Recommendation

1. To calculate estAccSTokensPerShare, divide by adapter.lastSTokenBalance()
instead of adapter.totalSupply.

function calcEstimateUserCollateralUSD(
address _userAddr
) public view returns (uint256 coll) {
Sio2Adapter.User memory user = adapter.getUser(_userAddr);
// get est collateral accRPS
uint256 estAccSTokensPerShare = adapter.accSTokensPerShare();
uint256 estUserCollateral = user.collateralAmount;

IERC20Upgradeable snastr = IERC20Upgradeable(adapter.snastrToken());
if (snastr.balanceOf(address(this)) > adapter.lastSTokenBalance()) {
estAccSTokensPerShare +=
((snastr.balanceOf(address(this)) - adapter.lastSTokenBalance()) *
rewardsPrecision) /
- adapter.totalSupply();
+ adapter.lastSTokenBalance();

2. To calculate accSTokensPerShare, divide by lastSTokenBalance instead of
totalSupply.

function _updatePools() private {
uint256 currentSTokenBalance = snastrToken.balanceOf(address(this));
string[] memory assets = assetManager.getAssetsNames();
uint256 assetslLen = assets.length;

// if sToken balance was changed, lastSTokenBalance updates
if (currentSTokenBalance > lastSTokenBalance) {
accSTokensPerShare +=
((currentSTokenBalance - lastSTokenBalance) *
rewardsPrecision) /
= totalSupply;
+ lastSTokenBalance;

¥Hashlock.

Hashlock Pty Ltd

23

3. To update accCollateralRewardsPerShare, divide by the current sToken balance
instead of totalSupply.

function _harvestRewards(uint256 _pendingRewards) private {

// set accumulated rewards per share for collateral asset
uint256 nastrShare = (snastrToken.balanceOf(address(this)) *
SHARES_PRECISION) / snastrToken.totalSupply();
uint256 collateralRewards = (rewardsToDistribute *
nastrShare *
collateralRewardsWeight) / sumOfAssetShares;
accCollateralRewardsPerShare +=
(collateralRewards * rewardsPrecision) /
= totalSupply;
+ snastrToken.balanceOf (address(this));

emit HarvestRewards(msg.sender, _pendingRewards);

Status

Resolved

[H-05] Sio2Adapter - Underwater positions cannot be liquidated due to
1tFactor > 10000

Description

Increasing the liquidation threshold by setting 1tFactor = 120080 results in the health
factor of borrow positions to be greater than intended. Underwater positions inside SiO2
Finance’s lending pools cannot be liquidated inside Sio2Adapter due to the health factor
being greater than 1.

Vulnerability Details

The 1tFactor variable is used to adjust the liquidation threshold relative to SiO2
Finance. Setting an 1tFactor > 108000 will cause the liquidation threshold to be greater
than the value set by SiO2 Finance’s lending pools.

function getLT() public view returns (uint256) {
return collaterallLT * 1ltFactor / 10_060;

}

The liquidation threshold is used to determine the health factor of an open position. A
higher liquidation threshold results in a higher health factor.

function getlLiquidationParameters(
address _user

) public update(_user) returns (uint256 hf, uint256 debtUSD) {
debtUSD = assetManager.calcEstimateUserDebtUSD(_user);
require(debtUSD > 6, "User has no debts");

¥Hashlock.

Hashlock Pty Ltd

uint256 collateralUSD = toUSD(
address(nastr),
userInfo[_user].collateralAmount

i
hf =
(collateralUsSD * getLT() * 1e18) /

RISK_PARAMS_PRECISION /
debtUSD;

24

An open borrow position can only be liquidated if its health factor < 1. Setting

1tFactor > 10000 will result in the health factor being greater than 1, which means that

underwater positions cannot be liquidated.

function liquidationCall(
string memory _debtAsset,
address _user,
uint256 _debtToCover

) external returns (uint256) {

// check user HF, debtUSD and update state

(uint256 hf, uint256 userTotalDebtInUSD) = getlLiquidationParameters(
_user

ir

require(hf < 1e18, "User has healthy enough position");

Proof of Concept

Add this test to Sio2Adapter.t.sol:

function testLTAndLTV() public {
uint256 depositAmount = 10_000 ether;
uint256 depositAmountInUsd = adapter.toUSD(address(nastr), depositAmount) ;
(uint256 collaterallT, uint256 liquidationPenalty, uint256 collaterallTV) =
assetManager.getAssetParameters(address(nastr));
console.log("Sio2 LTV:", collaterallLTV);
console.log("Sio2 LT:", collaterallT);
console.log("Sio2 LP:", liquidationPenalty);
console.log("LTV:", adapter.getLTV());
console.log("LT:", adapter.getLT());
vm.startPrank(user);
adapter.supply(depositAmount) ;

// Available collateral to borrow and withdraw in USD

// Mock Price of NASTR is 5340158 ($0.05340158)

uint256 estCollateralInUsd = assetManager.calcEstimateUserCollateralUSD(user);

console.log("estCollateralInUsd:", estCollateralInUsd, estCollateralInUsd /
1e18, "USD");

assertEq(depositAmountInUsd, estCollateralInUsd, "Collateral values don't
match") ;

// Available collateral to borrow and withdraw in USD

(uint256 availBorrowUSD1, uint256 availWithdrawUSD1) =
assetManager.availableCollateralUSD(user);

console.log("availBorrowUSD before borrow:", availBorrowUSD1, availBorrowUSD1
/ 1e18, "USD");

¥Hashlock.

Hashlock Pty Ltd

25

console.log("availWithdrawUSD before borrow:", availWithdrawUSD1,
availWithdrawUSD1 / 1e18, "USD");

assertEq((depositAmountInUsd * adapter.getLTV()) / 1e4, availBorrowUSD1,
"Available borrow values don't match");

// Borrow all available borrow amount
adapter.borrow("BUSD", availBorrowUSD1);
vm.stopPrank() ;

(uint256 availBorrowUSD2, uint256 availWithdrawUSD2) =
assetManager.availableCollateralUSD(user);

console.log("availBorrowUSD after borrow 2:", availBorrowUSD2, availBorrowUSD2
/ 1e18, "USD");

console.log("availWithdrawUSD after borrow 2:", availWithdrawUSD2,
availWithdrawUsSD2 / 1e18, "USD");

assertEq(availBorrowUSD2, @, "Available borrow amount should be 8");

assertEq(availWithdrawUSD2, 6, "Available withdraw amount should be 0");

// Get liquidation parameters with ltvFactor = 8000, 1ltFactor = 12000
(uint256 hf1,) = adapter.getLiquidationParameters(user);
console.log("Health factor with ltFactor = 12000:", hf1);
// Get liquidation parameters with ltvFactor = 8000, ltFactor = 10000

adapter.setParamsFactors (86000, 16000);
(uint256 hf2,) = adapter.getlLiquidationParameters(user);
console.log("Health factor with ltFactor = 10000:", hf2);

assertLt(hf1, hf2, "ltFactor = 12000 results in higher health factor!");

The test should fail.

[FAIL. Reason: Assertion failed.] testLTAndLTV() (gas: 972688)
Logs:
Sio2 LTV: 8000
Sio2 LT: 8500
Sio2 LP: 10250
LTV: 6400
LT: 10200
estCollateralInUsd: 534015800000000000000 534 USD
availBorrowUSD before borrow: 341770112000000000000 341 USD
availWithdrawUSD before borrow: 534015800000000000000 534 USD
availBorrowUSD after borrow 2: 8 © USD
availWithdrawUSD after borrow 2: 8 @ USD
Health factor with 1tFactor = 12000: 1593750000000000000
Health factor with 1tFactor = 10000: 1328125000000000000
Error: ltFactor = 12000 results in higher health factor!
Error: a < b not satisfied [uint]
Value a: 1593750000000000000
Value b: 1328125000000000000

Impact

Underwater loan positions cannot be liquidated through Sio2Adapter. These positions
will be liquidated through SiO2 Finance, resulting in potential insolvency of the
Sio2Adapter contract as these liquidated positions will not update the liquidated user’s

¥Hashlock.

Hashlock Pty Ltd

26

collateral balance. Furthermore, since the user’s debt amount isn’t updated, this will
result in incorrect collateral and debt values for the user.

Recommendation
Reduce liquidation factor to 80% (86080).
Status

Resolved

[M-01] Sio2Adapter#_harvestRewards - Unbounded loops when iterating
over assets from the asset manager could cause out of gas error

Description

Because the Sio2AssetManager allows for an unlimited number of BTokens to be added,
when the Sio2Adapter contract iterates over these two data structures during rewards
harvest, the contract may revert when a user tries to interact with the contract.

Vulnerability Details

The _harvestRewards function loops over all BTokens twice to calculate how rewards are
to be distributed:

for (uint256 i; i < assetslLen; i++) {

Y

// set accumulated rewards per share for each borrowed asset
// needed for sio2 rewards distribution
for (uint256 i; i < assetslLen;) {

}

Depending on the amount of BTokens that the contract supports, calls to
_harvestReward may run out of gas, resulting in a denial of service of all external-facing
functions.

Impact

All external-facing functions that require rewards to be harvested and updated may
revert due to running out of gas.

Recommendation

It's recommended that the Sio2Adapter allows for the specification of an offset and
length so that rewards can be collected in batches, or even rewards that the user is
eligible for specifically.

¥Hashlock.

Hashlock Pty Ltd

27

Status
Resolved
[M-02] Sio2Adapter#repayFull/repayPart - Users can immediately lose funds

if they attempt to repay their debt with native tokens in conjunction with
ERC20 borrowed

Description

Users can attempt to repay their debt by supplying tokens however, the repayFull and
repayPart function includes the payable keyword with no logic to stipulate if WASTR
was actually borrowed or not.

Vulnerability Details

The repayFull and repayPart functions are payable and call _repay. However, _repay
does not contain any logic to check that WASTR was actually borrowed for cases where
msg.value > O.

function _repay(
string memory _assetName,
uint256 _amount,
address _user
) private {
if (assetAddress != address(WASTR)) {
userBal = asset.balanceOf(msg.sender);

// add missing zeros for correct calculations if needed
userBal = assetManager.to18DecFormat(assetAddress, userBal);

require(userBal >= _amount, "Not enough wallet balance to repay");

}

A user can lose funds if they send ASTR inside their repay transaction, but don’t intend
to repay their WASTR loan.

Impact

Should users attempt to pay their ERC20 token debt with a native token, those tokens
may be locked in the contract forever.

Recommendation

It's recommended that the repay functions include some logic to determine whether a
users debt is to be repaid using ERC20 tokens or Native tokens by supplying the asset
name which correlates to address(0) and using msg.value in conjunction with the
desired amount the user wishes to pay back.

Status

Resolved

¥Hashlock.

Hashlock Pty Ltd

28

[M-03] Sio2Adapter#borrow - Debt accounting and real amount borrowed
are inconsistent due to precision loss

Description

Due to the precision loss from converting the amount to borrow from 18 decimal format
to the decimals of the borrowed asset, the user’s debt increase differs from the actual
amount borrowed.

Vulnerability Details

The borrow function increases the user’s debt and total borrowed of the asset by
_amount, but actually borrows nativeAmount.

function borrow(
string memory _assetName,
uint256 _amount
) external update(msg.sender) nonReentrant {

debts[msg.sender][_assetName]| += _amount;
assetManager.increaseAssetsTotalBorrowed(_assetName, _amount);

uint256 nativeAmount = assetManager.toNativeDecFormat(
assetAddr,
_amount

s

pool.borrow(assetAddr, nativeAmount, 2, 0, address(this));

nativeAmount is calculated by reducing _amount to the asset’s native decimal format,
which results in precision loss as a result of integer division.

function toNativeDecFormat(
address _tokenAddress,
uint256 _amount
) external view returns (uint256) {
if (ERC2@Upgradeable(_tokenAddress).decimals() < 18) {

return
_amount /
10 ** (18 - ERC20Upgradeable(_tokenAddress).decimals());
}
return _amount;
}
Impact

Since nativeAmount <= _amount, there are instances where a user can receive less in
borrowed assets than they’re meant to receive.

Recommendation

Increase the user’s debts and total borrowed for the assets by
to18DecFormat(nativeAmount), as opposed to just using _amount.

¥Hashlock.

Hashlock Pty Ltd

29

Status

Resolved

[M-04] Sio2Adapter#initialize - sio2Adapter cannot be initialized due to
circular dependency with Sio2AdapterAssetManager

Description

Sio2Adapter.initialize will revert, as Sio2AdapterAssetManager has not set the adapter
state variable.

Vulnerability Details

Sio2Adapter.initialize calls the Sio2AdapterAssetManager.getAssetWeights function to
assign 3 value to collateralRewardsWeight.

function initialize(
) external initializer {

collateralRewardsWeight = assetManager.getAssetWeight(address(nastr));

This in turn calls adapter.incentivesController inside Sio2AdapterAssetManager.

function getAssetWeight(address asset) external view returns (uint256) {
ISio2IncentivesController ic =
ISio2IncentivesController(adapter.incentivesController());

}

However, the adapter state variable inside Sio2AdapterAssetManager has not been set,
since Sio2Adapter is still being initialized. This results in an EVM revert.

Impact
The Sio2Adapter contract cannot be initialized.
Recommendation

Set the collateralRewardsWeight value in a separate function that’s called after
initialize and Sio2AdapterAssetManager.setAdapter. Make sure that all of these calls
happen inside one transaction to prevent any potential front-running attacks or
unintended behavior.

Status

Resolved

The getAssetWeight function now takes the address of the incentives controller
as input instead of calling Sio2Adapter.

¥Hashlock.

Hashlock Pty Ltd

30

[M-05] updateParams can be called more than once
Description

Sio2AdapterAssetManager.updateParams can be by the owner more than once, which
would result in ‘per-share’ variables being scaled up by 24 decimal places more than
once.

Vulnerability Details

The updateParams function in both Sio2Adapter and Sio2AdapterAssetManager can be
called more than once by the owner, which would result in the ‘per-share’ variables
being scaled up by 24 decimal places more than once.

Impact

The ‘per-share’ variables will be scaled up by 24 decimal places more than once, which
would result in abnormally higher rewards and debts for users.

Recommendation

Add a paramsUpdated boolean variable to both Sio2Adapter and
Sio2AdapterAssetManager to prevent updateParams from being called more than once.

bool private _paramsUpdated;

function updateParams() public onlyOwner {
require(!_paramsUpdated, "Params already updated");

paramsUpdated = true;

Status

Resolved

[M-06] Sio2AdapterAssetManager#removeAsset - A user with an
outstanding debt in a removed asset will lose pending rewards and will not
be able to withdraw their collateral or borrow any asset

Description

A removed asset will have its Asset struct reset to its default values. This results in a
loss of pending rewards/debts and a DoS when a user with an outstanding debt tries to
borrow or withdraw their collateral.

Vulnerability Details

In Sio2Adapter, when a user borrows a new asset, the assetName gets added into their
borrowedAssets array inside their User struct. This results in the following
vulnerabilities:

1. The borrowedAssets array is used whenever a user triggers an update on their user
rewards.

¥Hashlock.

Hashlock Pty Ltd

31

function _updateUserRewards(address _user) private {
User storage user = userInfo[_user];
uint256 userBAssetsLen = user.borrowedAssets.length;

// moving by borrowing assets for current user
for (uint256 i; i < userBAssetsLen;) {
(, string memory assetName, , , , , , ,
uint256 assetAccBTokensPerShare,
uint256 assetAccBorrowedRewardsPerShare
) = assetManager.assetInfo(user.borrowedAssets[i]); // prettier-ignore

// update bToken debt
uint256 debtToHarvest = (debts[_user][assetName] *
assetAccBTokensPerShare) /
rewardsPrecision -
userBTokensIncomeDebt[_user][assetName] ;
debts[_user][assetName] += debtToHarvest;
userBTokensIncomeDebt[_user][assetName] =
(debts|[_user][assetName] * assetAccBTokensPerShare) /
rewardsPrecision;

// harvest sio2 rewards amount for each borrowed asset
user.rewards +=
(debts[_user][assetName] * assetAccBorrowedRewardsPerShare) /
rewardsPrecision -
userBorrowedRewardDebt[_user][assetName] ;

userBorrowedRewardDebt[_user][assetName] =
(debts[_user][assetName] * assetAccBorrowedRewardsPerShare) /
rewardsPrecision;

// update total amount of total borrowed for current asset
assetManager.increaseAssetsTotalBorrowed(assetName, debtToHarvest);

unchecked {
++7;

’

}

The function will attempt to fetch the asset info of the removed asset, which have been
reset to their default values.

(, string memory assetName, , , , , , ,
uint256 assetAccBTokensPerShare,
uint256 assetAccBorrowedRewardsPerShare
) = assetManager.assetInfo(user.borrowedAssets[i]);

Since assetName = , assetAccBTokensPerShare = 0 and
assetAccBorrowedRewardsPerShare = 0, debtToHarvest = 0 and the user will not be able
to accrue any pending debt or rewards for the removed asset.

2. A user with a removed asset in their borrowedAssets array will not be able to
withdraw or borrow, as calls to Sio2AdapterAssetManager .estimateDebtInAsset will
revert, causing Sio2AdapterAssetManager.calcEstimateUserDebtUSD and hence
Sio2AdapterAssetManager.availableCollateralUSD to also revert.

¥Hashlock.

Hashlock Pty Ltd

32

function estimateDebtInAsset(address _userAddr, string memory _assetName) public view
returns (uint256) {
Asset memory asset = assetInfo[_assetName];

// @audit “asset.bTokenAddress = address(@) => Calls to zero address will revert

uint256 curBBal =
ERC20Upgradeable(asset.bTokenAddress) .balanceOf(address(adapter));

}

3. To remove the removed asset from the user’s borrowedAssets array, the user will
need to repay back their outstanding debt. However, this cannot be done, as the
returned assetAddress from assetManager .assetInfo inside _repay will be the zero
address.

function _repay(
string memory _assetName,
uint256 _amount,
address _user
) private whenNotPaused {
// @audit “assetAddress = address(0)"
(, , address assetAddress, , , , , , ,) = assetManager.assetInfo(
_assetName
)
IERC20Upgradeable asset = IERC20Upgradeable(assetAddress);

uint256 userBal;

if (assetAddress != address(WASTR)) {
// @audit this will revert if the asset is removed
userBal = asset.balanceOf(msg.sender);

Impact
1. Any pending rewards or debt that a user has in a removed asset will be lost.

2. The user will not be able to borrow any assets or withdraw any of their collateral,
regardless of their health factor. Their collateral is frozen.

3. The user cannot repay their outstanding debt on the removed asset.
Recommendation

Inside Sio2AdapterAssetManager, keep track of removed assets through the following
mapping:

mapping(string => Asset) public removedAssetInfo;

The removeAsset function can add to this mapping before the key-value pair is deleted
from assetInfo:

Inside removeAsset:

¥Hashlock.

Hashlock Pty Ltd

33

function removeAsset(string memory assetName) external onlyOwner {
removedAssetInfo[assetName] = asset;
// Delete id since removed asset is no longer in "assets array

delete removedAssetInfo[assetName].id;

delete assetInfo[assetName];

External calls to Sio2AdapterAssetManager.assetInfo (except in borrow) and internal
calls to the assetInfo mapping used for debt/reward calculations inside
Sio2AdapterAssetManager can instead be routed through a new function that checks if
the asset exists in assetInfo or removedAssetInfo:

Inside Sio2AdapterAssetManager:

function getAssetInfo(string memory assetName) public view returns (Asset memory) {
Asset memory asset = assetInfo[assetName];
if (asset.addr == address(0)) {
// Asset has been removed
asset = removedAssetInfo[assetName];

}

return asset;

These modifications will achieve the following:

1. This will allow users to update their pending rewards and debts for removed assets,
and allow users to pay off their outstanding debts on the removed asset.

2. Once all outstanding debts for the removed asset have been paid off,
_removeAssetFromUser will be called, removing the asset from the user’s
borrowedAssets array. This will allow the user to call withdraw and borrow again.

3. Since _repay will now be able to fetch the asset info of the removed asset, the user
will be able to repay their outstanding debt on the removed asset.

Status

Resolved

[M-07] Sio2AdapterAssetManager - Decimal conversion functions do not
account for ERC-20 tokens with more than 18 decimals

Description

The to18DecFormat and toNativeDecFormat functions do not account for ERC-20 tokens
with more than 18 decimals. This results in an accounting error where the user gets less
borrowed assets than they intended but still incur the same debt.

Vulnerability Details

to18DecFormat and toNativeDecFormat return the original _amount if the token has 18 or
more decimals.

¥Hashlock.

Hashlock Pty Ltd

34

function tol18DecFormat(address _tokenAddress, uint256 _amount) public view returns
(uint256) {
if (ERC20Upgradeable(_tokenAddress).decimals() < 18) {
return _amount * 10 ** (18 - ERC20Upgradeable(_tokenAddress).decimals());
}
return _amount;

}

function toNativeDecFormat (
address _tokenAddress,
uint256 _amount
) external view returns (uint256) {
if (ERC2@0Upgradeable(_tokenAddress).decimals() < 18) {
return
_amount /
10 ** (18 - ERC2@Upgradeable(_tokenAddress).decimals());
}

return _amount;

Sio2Adapter.borrow uses these functions to convert the input _amount which is reflected
in 18 decimals to the token’s native decimals.

function borrow(
string memory _assetName,
uint256 _amount
) external update(msg.sender) nonReentrant whenNotPaused {

uint256 nativeAmount = assetManager.toNativeDecFormat(assetAddr, _amount);
uint256 roundedAmount = assetManager.tol18DecFormat(assetAddr, nativeAmount) ;

debts[msg.sender][_assetName] += roundedAmount;
assetManager.increaseAssetsTotalBorrowed(_assetName, roundedAmount);

pool.borrow(assetAddr, nativeAmount, 2, 6, address(this));

However, if the token has more than 18 decimals, _amount remains unchanged. This
means that the user borrows less tokens than specified, even though the debt recorded
is the same as the amount they intended to borrow.

to18DecFormat is also used inside estimateDebtInAsset, resulting in the user’s debt for
assets with more than 18 decimals to be higher than intended. The amount of debt ends
up being equivalent to the amount that was intended to be borrowed, instead of the
amount actually borrowed.

Proof of Concept
Let’s assume that BUSD has 20 decimals.

A user that intends to borrow 1000 BUSD will call borrow("BUSD", 10080e18). The borrow
function will not convert 1800e18 into BUSD’s nativeAmount which is 1808e20 since BUSD

¥Hashlock.

Hashlock Pty Ltd

35

has more than 18 decimals. The amount that Sio2Adapter ends up borrowing and giving
to the user ends up being 1600e18 / 1e20 = 18 BUSD, even though the user’s debts are
recorded as 100808e18 which is $1000 USD.

The scenario above is demonstrated through the test below. Add this test to
Sio2Adapter.t.sol:

function testAssetMoreThan18Dec() public {
uint8 decimals = 20;

// Set BUSD to 20 decimals
busd.setDecimals(decimals) ;
vdbusd.setDecimals(decimals) ;

// Start supplying and borrowing

vm.startPrank(user);

adapter.supply (10000000 ether); // supply 10000000 nASTR
adapter.borrow("BUSD", 1000 ether); // borrow 1000 BUSD

uint256 debt = assetManager.calcEstimateUserDebtUSD(user);
console.log("debt in USD:", debt / 1 ether);
console.log("BUSD borrowed:", busd.balanceOf(user) / 10 ** decimals);

// @audit this fails
assertEq(busd.balanceOf (user), 1600 * 10 ** decimals, "user should have 1000

BUSD") ;
// Repay debt
busd.approve(address(adapter), type(uint256).max);
adapter.repayFull("BUSD");
assertEq(busd.balanceOf (user), 0, "user should have no BUSD left");
uint256 debt2 = assetManager.calcEstimateUserDebtUSD(user) ;
assertEq(debt2, 6, "user should have no debt");
vm.stopPrank() ;
}

Running the unit test shows that the user intends to borrow 1000 BUSD, but only gets
10. However, their outstanding debt is still $1000 USD.

[FAIL. Reason: Assertion failed.] testAssetMoreThan18Dec() (gas: 843436)
Logs:

debt in USD: 1000

BUSD borrowed: 10

Error: user should have 1000 BUSD

Error: a == b not satisfied [uint]

Expected: 100000000000000000000000
Actual: 1000000000000000000000

Impact

Users who borrow assets with more than 18 decimals receive less assets than intended
by a factor of 18 ** (assetDecimals - 18). However, the amount of debt recorded
remains the same.

¥Hashlock.

Hashlock Pty Ltd

36

Recommendation

Account for assets with more than 18 decimals by changing the functions to the
following:

function tol18DecFormat(address _tokenAddress, uint256 _amount) public view returns
(uint256) {
if (ERC20Upgradeable(_tokenAddress).decimals() < 18) {
return _amount * 1@ ** (18 - ERC2@Upgradeable(_tokenAddress).decimals());

}
+ if (ERC20Upgradeable(_tokenAddress).decimals() > 18) {
+ return _amount / 10 ** (ERC20Upgradeable(_tokenAddress).decimals() - 18);
+ }

return _amount;

}

function toNativeDecFormat(
address _tokenAddress,
uint256 _amount
) external view returns (uint256) {
if (ERC2@0Upgradeable(_tokenAddress).decimals() < 18) {
return
_amount /
10 ** (18 - ERC20Upgradeable(_tokenAddress).decimals());
}

if (ERC20Upgradeable(_tokenAddress).decimals() > 18) {
return
_amount * 10 ** (ERC2@Upgradeable(_tokenAddress).decimals() - 18);

+ + + +

}

return _amount;

The POC unit test should pass.

[PASS] testAssetMoreThani18Dec() (gas: 846028)
Logs:

debt in USD: 1000

BUSD borrowed: 1000

Status

Resolved

Low

[L-01] Outdated version of Solidity
Description

The project uses pragma solidity “@.8.4. 0.8.4 is an outdated version of Solidity

¥Hashlock.

Hashlock Pty Ltd

37

Recommendation
Use pragma solidity ©.8.18.
Status

Acknowledged

Since the contracts have already been deployed, it would be impractical to
upgrade the version. To avoid potential incompatibility issues with newer
versions of Solidity, it was decided along with the Hashock team that it would
be better to keep the contracts on version 0.8.4.

[L-02] Unnecessary indentation
Description

There are inconsistent and unnecessary indentations in the code that damages its
readability.

mapping(address => User) public userInfo;

mapping(address => mapping(string => uint256)) public debts;

mapping(address => mapping(string => uint256)) public userBorrowedAssetID;

mapping(address => mapping(string => uint256)) public userBTokensIncomeDebt;
))

mapping(address => mapping(string => uint256
public userBorrowedRewardDebt;

Recommendation
Fix these inconsistencies. Write the mapping line above in one line.
Status

Resolved

[L-03] Lack of checks-effects-interactions pattern
Description

Some functions lack the Checks-Effects-Interaction (CEIl) pattern. This is best practice
to avoid potential reentrancy attacks.

function supply(uint256 _amount) external update(msg.sender) nonReentrant {
require(_amount > @, "Should be greater than zero");
require(
nastr.balanceOf (msg.sender) >= _amount,
“Not enough nASTR tokens on the user balance"

)

// take nastr from user
nastr.safeTransferFrom(msg.sender, address(this), _amount);

// deposit nastr to lending pool
nastr.approve(address(pool), _amount);

¥Hashlock.

Hashlock Pty Ltd

pool.deposit(address(nastr), _amount, address(this), 0);

user.collateralAmount += _amount;
totalSupply += _amount;

assetManager .updateBalanceInAdaptersDistributor(msg.sender) ;
_updateUserCollateralIncomeDebts(user);

emit Supply(msg.sender, _amount);

38

Recommendation
Perform external calls to the end of the function.
Status

Resolved

[L-04] Spelling mistake in comments

Description

There are some spelling mistakes in comments, which reduce the quality and readability

of the code.

function _updateUserRewards(address _user) private {

// uncrease total collateral amount by received user's collateral
totalSupply += collateralToHarvest;

Recommendation

Fix these spelling mistakes.

Status

Resolved

[L-05] Sio2Adapter - Don’t hard-code values that aren’t guaranteed to be
constant

Description

The contract uses hard-coded values, and sometimes even stores important state
variables from external contracts as constants.

uint256 private constant PRICE_PRECISION = 1e8;

uint256 private constant COLLATERAL_REWARDS_WEIGHT = 5;

¥Hashlock.

Hashlock Pty Ltd

39

Recommendation

If the value comes from a state variable from an external contract, get the value using
an external call.

If the value is a config for the contract and it is unknown whether it would change in
the future, make it a state variable that can be changed.

Status
Resolved

The Algem team is confident that the PRICE_PRECISION constant is static, as the
value that it corresponds to comes from a contract that is not upgradeable and
contains no logic to change it. COLLATERAL _REWARDS_WEIGHT was changed to be a
state variable that’s calculated on initialization.

[L-06] Incorrect use of Natspec comments

Description

The contract declares Natspec comments with 2 slashes instead of 3.

// @notice Collect accumulated b-tokens and s-tokens

Recommendation

Change the comments to 3 slashes.

Status

Resolved

[L-07] Sio2Adapter - repay function Natspec comments do not indicate that
_amount param is in 18 decimals

Description

The Natspec comment for the _amount parameter inside the repayPart function does
not indicate that it’s formatted in 18 decimals.

// @dev when user calls repay(), _user and msg.sender are the same
// and there is difference when liquidator calling function
// @param _assetName Asset name
// @param _amount Amount of tokens
function repayPart(
string memory _assetName,
uint256 _amount
) external payable update(msg.sender) nonReentrant {
_repay(_assetName, _amount, msg.sender);

}

Recommendation

Change the comment to indicate that it's formatted in 18 decimals.

¥Hashlock.

Hashlock Pty Ltd

40

// @param _amount Amount of tokens in 18 decimals

Status

Resolved

[L-08] Sio2AdapterAssetManager#getAssetWeight - assets memory address
array shadows the state variable assets

Description

assets is a string array in storage that stores all the names of the added assets, which
is shadowed by a declared address array in getAssetWeight of the same name.

In storage:

string[] public assets;

In getAssetWeight:

address[] memory assets = pool.getReservesList();

Recommendation

Use a different name for the memory array. We recommend assetsInPool.
Status

Resolved

[L-09] Sio2AdapterAssetManager#removeAsset - Incomplete Natspec
comment

Description

The Natspec comment for removeAsset is incomplete.

/// @notice Removes an asset and

Recommendation
Complete the Natspec comment.
Status

Resolved

¥Hashlock.

Hashlock Pty Ltd

41

[L-10] Sio2AdapterAssetManager#getAssetWeight - Unnecessary casting of
contract types

Description

getAssetWeight casts the result of adapter.incentivesController() (which returns the
contract type ISio2IncentivesController) to ISio2IncentivesController. This is
unnecessary.

ISio2IncentivesController controller =
ISio2IncentivesController(adapter.incentivesController());

Recommendation

Remove the casting.

ISio2IncentivesController controller = adapter.incentivesController();

Status
Resolved
[L-11] Sio2AdapterAssetManager#estimateDebtinAsset - Incorrect

estAccBTokens calculation results in an incorrect debt estimate and
availableCollateralUsD calculation

| This finding is related to [H-04]
Description

The estAccBTokens calculation in Sio2AdapterAssetManager .estimateDebtInAsset divides
by the current bToken balance instead of the last updated bToken balance. This results
in the estimated debt being underestimated and the availableCollateralUSD calculation
being overestimated.

Vulnerability Details

To calculate the estimated accumulated bTokens per share, the income is divided by the
current bToken balance as opposed to the last updated bToken balance.

function estimateDebtInAsset(address _userAddr, string memory _assetName) public view
returns (uint256) {
Asset memory asset = assetInfo[_assetName];

uint256 bIncomeDebt = adapter.userBTokensIncomeDebt(_userAddr, _assetName);
uint256 estDebt = adapter.debts(_userAddr, _assetName);
uint256 estAccBTokens = asset.accBTokensPerShare;

uint256 income;
uint256 curBBal =
ERC20Upgradeable(asset.bTokenAddress) .balanceOf (address(adapter));
uint256 curBBal18Dec = to18DecFormat(asset.bTokenAddress, curBBal);
if (curBBall18Dec > asset.lastBTokenBalance) ({
income = curBBal18Dec - asset.lastBTokenBalance;

¥Hashlock.

Hashlock Pty Ltd

}

42

if (curBBal18Dec > 0 && income > 0) {
// @audit division by “curBBal18Dec” instead of “asset.lastBTokenBalance"
estAccBTokens += income * rewardsPrecision / curBBali18Dec;
estDebt += estDebt * estAccBTokens / rewardsPrecision - bIncomeDebt;

}

return estDebt;

This approach underestimates the value of the accrued debt in situations where
curBBali8Dec < asset.lastBTokenBalance, which in turn results in an overestimation of
the availableCollateralUSD calculation.

function availableCollateralUSD(
address _userAddr
) public view returns (uint256 toBorrow, uint256 toWithdraw) {
Sio2Adapter.User memory user = adapter.getUser(_userAddr);
if (user.collateralAmount == 0) return (0, 0);
uint256 debt = calcEstimateUserDebtUSD(_userAddr) ;
uint256 userCollateral = calcEstimateUserCollateralUSD(_userAddr);
uint256 collateralAfterLTV = (userCollateral * adapter.collaterallLTV()) /
led4; // 1e4 is RISK_PARAMS_PRECISION
if (collateralAfterLTV > debt) toBorrow = collateralAfterLTV - debt;
uint256 debtAfterLTV = (debt * 1e4) / adapter.collaterallLTV();
if (userCollateral > debtAfterLTV)
toWithdraw = userCollateral - debtAfterLTV;

Impact

External contracts that call Sio2AdapterAssetManager.estimateDebtInAsset or
Sio2AdapterAssetManager.availableCollateralUSD will receive an incorrect debt
estimate and available collateral calculation.

Auditor’s Note: A similar bug was found in [H-04], which is a high severity
vulnerability. However, the impact of this bug is much lower, as the update
modifier is called before borrow or withdraw which updates
asset.lastBTokenBalance. This means that the Sio2Adapter contract will not be
affected by this buqg.

Recommendation

To calculate estAccBTokens, divide by the Iast bToken balance instead of the current
one.

In Sio2AdapterAssetManager.estimateDebtInAsset:

function estimateDebtInAsset(address _userAddr, string memory _assetName) public view
returns (uint256) {
Asset memory asset = assetInfo[_assetName];

uint256 bIncomeDebt = adapter.userBTokensIncomeDebt(_userAddr, _assetName);
uint256 estDebt = adapter.debts(_userAddr, _assetName);
uint256 estAccBTokens = asset.accBTokensPerShare;

uint256 income;

¥Hashlock.

Hashlock Pty Ltd

uint256 curBBal =
ERC20Upgradeable(asset.bTokenAddress) .balanceOf(address(adapter));
uint256 curBBall18Dec = to18DecFormat(asset.bTokenAddress, curBBal);
if (curBBali18Dec > asset.lastBTokenBalance) {
income = curBBal18Dec - asset.lastBTokenBalance;

}

if (curBBal18Dec > @ && income > B) {
- estAccBTokens += income * rewardsPrecision / curBBali18Dec;
+ estAccBTokens += income * rewardsPrecision / asset.lastBTokenBalance;
estDebt += estDebt * estAccBTokens / rewardsPrecision - bIncomeDebt;

}

return estDebt;

43

Status

Resolved

[L-12] Sio2Adapter#_updateUserRewards - Leftover pending rewards after

function is called due to order of operations

Description

The Sio2Adapter._updateUserRewards function distributes pending rewards to the user

then updates the user’s user.collateralAmount. Since pending rewards are calculated

using user.collateralAmount, this order of operations results in leftover pending
rewards that are not distributed to the user.

function _updateUserRewards(address _user) private {

// harvest sio2 rewards for user's collateral

user.rewards +=
(user.collateralAmount * accCollateralRewardsPerShare) /
rewardsPrecision -
user.collateralRewardDebt;

user.collateralRewardDebt =
(user.collateralAmount * accCollateralRewardsPerShare) /
rewardsPrecision;

// user collateral update
uint256 collateralToHarvest = (user.collateralAmount *
accSTokensPerShare) /
rewardsPrecision -
user.sTokensIncomeDebt ;
user.collateralAmount += collateralToHarvest;
user.sTokensIncomeDebt =
(user.collateralAmount * accSTokensPerShare) /
rewardsPrecision;

Recommendation

The order of operations should be reversed. Update the user’s collateral before
distributing rewards to the user.

¥Hashlock.

Hashlock Pty Ltd

44

function _updateUserRewards(address _user) private {

// user collateral update
uint256 collateralToHarvest = (user.collateralAmount *
accSTokensPerShare) /
rewardsPrecision -
user.sTokensIncomeDebt ;
user.collateralAmount += collateralToHarvest;
user.sTokensIncomeDebt =
(user.collateralAmount * accSTokensPerShare) /
rewardsPrecision;

// harvest sio2 rewards for user's collateral

user.rewards +=
(user.collateralAmount * accCollateralRewardsPerShare) /
rewardsPrecision -
user.collateralRewardDebt;

user.collateralRewardDebt =
(user.collateralAmount * accCollateralRewardsPerShare) /
rewardsPrecision;

Status

Resolved

Gas

[G-01] Sio2Adapter - Storing a user’s address in User struct is redundant

Description

The User struct stores the address of the user as one of the fields when it isn’t required

since the userInfo mapping’s key is also the address.

Recommendation

Remove the User.addr field from the struct, and replace its references in the code with

just the msg.sender.

In the case of the new user check, you can check for a non-zero user ID:

// check for new user. And add to arr if there is no such
if (userInfo[msg.sender].id == 0) {

user.id = users.length;

user.addr = msg.sender;

users.push(msg.sender) ;

Status

Resolved

¥Hashlock.

Hashlock Pty Ltd

45

Since the contract is already deployed, the struct cannot be edited. The logic
was edited so that all storage entries related to the addr record have been
removed and a new check has been added when adding a new user. In addition
to the check for ‘id = O’, checks have been added to ensure that the user has a
zero ‘collateralAmount’ and zero ‘rewards’, as there exists a user with index O.
[G-02] Sio2Adapter - Cache array length before looping
Description

Before iterating through an array with a for-loop, the length of the array can be cached
in memory so that its value does not need to be accessed on each iteration of the loop.

Recommendation

Cache the array length by assigning it to a variable in memory before looping through
the array.

Status

Resolved

[G-03] Sio2AdapterAssetManager - bTokenExist and assetNameExist mappings
are unnecessary

Description

bTokenExist and assetNameExist are mappings that store whether a bToken or asset
name exists. They are used to check if a particular asset has already been added.
However, these mappings are unnecessary, as the assetInfo mapping already stores all
the added assets by their assetName.

Recommendation

Deprecate the use of the bTokenExist and assetNameExist mappings. To check if a
particular asset has already been added, only the following require statement is
necessary:

require(keccak256 (abi.encodePacked(_assetName)) != keccak256(""), "Empty asset name");

Auditor’s Note: The optimal solution would be to change assetInfo into a
mapping from address to Asset and the assets array from string to address
accordingly. However, since the contracts are already deployed, this change is
not possible. The next best solution is to deprecate the use of bTokenExist and
assetNameExist and only use assetInfo to check if an asset has already been
added. If more assurance that an asset has not been added is required, the
following mapping can be added:

mapping(address => bool) public assetAddressExist;

This mapping can be used to check if an asset has already been added by its
address.

¥Hashlock.

Hashlock Pty Ltd

Status

Resolved

¥Hashlock.

Hashlock Pty Ltd

46

47

Centralisation

The project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality
but depend highly on internal team responsibility.

v

Centralised Decentralised

¥Hashlock.

Hashlock Pty Ltd

48

Conclusion

After Hashlocks analysis, the Algem project seems to have a sound and well tested code
base, however our findings need to be resolved in order to achieve security. Overall,
most of the code is correctly ordered and follows industry best practices. The code is
well commented as well. To the best of our ability, Hashlock is not able to identify any

further vulnerabilities.

¥Hashlock.

Hashlock Pty Ltd

49

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a
collaborative effort. The objective of our security audits are to improve the quality of
systems and upcoming projects we review and to aim for sufficient remediation to help
protect users and project leaders. Below is the methodology we use in our security audit

process.

Manvual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code
logic, error handling, protocol and header parsing, cryptographic errors, and random
number generators. We also watch for areas where more defensive programming could
reduce the risk of future mistakes and speed up future audits. Although our primary
focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and
whitebox penetration testing. We consider the project's website, specifications, and
whitepaper (if available) to attain a high level understanding of what functionality the
smart contract under review contains. We then communicate with the developers and
founders to gain insight into their vision for the project. We install and deploy the
relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

¥Hashlock.

Hashlock Pty Ltd

50

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities
and seeing them through to successful remediation. When a potential issue is
discovered, we immediately create an issue entry for it in this document, even though
we have not yet verified the feasibility and impact of the issue. This process is vast
because we document our suspicions early even if they are later shown to not represent
exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally we
suggest the requirements for remediation engineering for future releases. The
mitigation and remediation recommendations should be scrutinised by the developers
and deployment engineers, and successful mitigation and remediation is an ongoing
collaborative process after we deliver our report, and before the contracts details are

made public.

¥Hashlock.

Hashlock Pty Ltd

57

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best
industry practices at the date of this report, in relation to: cybersecurity vulnerabilities
and issues in the smart contract source code, the details of which are disclosed in this
report, (Source Code); the Source Code compilation, deployment and functionality
(performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the
analysis and producing this report, it is important to note that you should not rely on
this report only. We also suggest conducting a bug bounty program to confirm the high
level of security of this smart contract.

Hashlock is not responsible for the safety of any funds, and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee explicit

security of the audited smart contracts.

¥Hashlock.

Hashlock Pty Ltd

52

About Hashlock

Hashlock is an Australian based company aiming to help facilitate the successful
widespread adoption of distributed ledger technology. Our key services all have a focus
on security, as well as projects that focus on streamlined adoption in the business
sector.

Hashlock is excited to continue to grow its partnerships with developers and other web3
oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

¥Hashlock.

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

¥cHashlock.

¥Hashlock.

HHHHHHHHHHHH

