
1



2

Table of Contents

Executive Summary 4
Project Context 4
Audit scope 7
Security Rating 8
Standardised Checks 9
Intended Smart Contract Functions 11
Code Quality 12
Audit Resources 12
Dependencies 12
Severity Definitions 13
Audit Findings 13
High 14

[H-01] Malicious users can deposit after bonding period to steal rewards from other stakers
14

Description 14
Vulnerability Details 14
Impact 14
Recommendation 15

[H-02] rpTokensQty[token] is not updated in topUpRewardsPoolFor which will cause a dos
when attempting to claim rewards 16

Description 16
Vulnerability Details 16
Impact 16
Recommendation 16
Status
Resolved 16

Medium 16
[M-01] If a partner reward token if removed users will lose rewards 16

Description 16
Vulnerability Details 17
Impact 17
Recommendations 17

[M-02] Time distributed reward updates are sometimes skipped 17
Description 17
Vulnerability Details 17
Impact 17
Recommendations 17
Status 17
Resolved 18

[M-03] Stake’s veAlgmQty is not reset if user unstakes all ALGM 18
Description 18

Hashlock Pty Ltd



3

Vulnerability Details 18
Impact 18
Recommendations 18
Status 18
Resolved 18

[M-04] ALGMStaking - Precision loss due to division before multiplication 18
Description 18
Vulnerability Details 18
Impact 19
Recommendations 19
Status 19
Resolved 19

[M-05] If WASTR is used as a partner token the claimRewards function could be dosed or
double rewards may be claimed 19

Description 19
Vulnerability Description 19
Impact 19
Recommendations 19
Status 20
Resolved 20

Low 20
[L-01] Missing sanity checks for instances of msg.value 20

Recommendations 20
Status 20
Resolved 20

[L-02] to can be set to zero address 20
Recommendations 20
Status 20
Resolved 20

Gas 20
[G-01] Initialize calcPredicted as false 20

Status 21
Resolved 21

[G-02] Storing totalPartnerTokens is unnecessary as partnerTokens is already stored 21
Status 21
Resolved 21

Centralisation 22
Conclusion 23
Our Methodology 24
Disclaimers 26
About Hashlock 27

Hashlock Pty Ltd



4

Hashlock Pty Ltd



5

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN
CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED
VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO
COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR
INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE
REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS
REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd



6

Executive Summary

The Algem team partnered with Hashlock to conduct a security audit of their

Governance Staking smart contracts. Hashlock manually and proactively reviewed the

code in order to ensure the project’s team and community that the deployed contracts

are secure.

Project Context
Algem is a DeFi dApp built on Astar Network that allows you to stay liquid while staking

your ASTR. Staying liquid means you can double-dip with your Astar tokens by staking

while yield farming.

Simply put, you don't have to choose between staking and yield farming with your Astar

tokens. You can do both.

Project Name: Algem

Compiler Version: ^0.8.4

Website: https://www.algem.io/

Hashlock Pty Ltd

https://www.algem.io/


7

Logo:

Visualised Context:

Hashlock Pty Ltd



8

Project Visuals:

Hashlock Pty Ltd



9

Audit scope
We at Hashlock audited the solidity code within the Algems Staking Project, the scope
of works included a comprehensive review of the smart contracts listed below. We
tested the smart contracts to check for their security and efficiency. These tests were
undertaken primarily through manual line by line analysis and were supported by
software assisted testing.

Description Project Review and Security Analysis Report for
Algem Protocol Smart Contracts and other
factors.

Platform Ethereum / Solidity

Audit Date August, 2023

Contract 1 ALGMStaking.sol

Contract 1 MD5 Hash f18c2fe1b45226f8dc3f8cbae0cd0d47

Contract 2 veALGM.sol

Contract 2 MD5 Hash d4b2caa5c29abc8f0dda0c7ab68b27f3

Hashlock Pty Ltd



10

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts. We initially identified some
significant vulnerabilities that have since been addressed.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit overview section. General

overview is presented in the Function list section and all identified issues can be found

in the Audit overview section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

2 High severity vulnerabilities

5 Medium severity vulnerabilities

2 Low severity vulnerabilities

2 Gas Optimisations

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd



11

Standardised Checks

Main Category Subcategory Result

General Code
Checks

Solidity/compiler version stated Passed

Consistent pragma version across each contract Passed

Outdated Solidity Version Reviewed

Overflow/underflow Passed

Correct checks, effects, interaction order Reviewed

Lack of check on input parameters Reviewed

Function input parameters check bypass Passed

Correct Access control Reviewed

Built in emergency features Reviewed

Correct event logs Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Reviewed

Features claimed Passed

delegatecall() vulnerabilities Passed

Other programming issues Reviewed

Code
Specification

Correctly declared function visibility Passed

Correctly declared variable storage location Passed

Use keywords/functions to be deprecated Passed

Unused code Reviewed

Gas
Optimization

“Out of Gas” Issue Reviewed

High consumption ‘for/while’ loop Reviewed

Hashlock Pty Ltd



12

High consumption ‘storage’ storage Reviewed

Assert() misuse Passed

Tokenomics
Risk

The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Initial Audit Result: VULNERABLE

Revised Audit Result: PASSED

Hashlock Pty Ltd



13

Intended Smart Contract Functions

Claimed Behaviour Actual Behaviour

ALGMStaking

- Allows users to stake and unstake their ALGM

tokens in exchange for rewards.

- Allows admins to have access to special functions

for the purpose of configuration and settings up

rewards tokens.

The contract achieves this

behaviour however, as it

can be seen from the below

findings, there may be

some instances where

rewards tokens may be

stolen or denial of service

conditions may be met.

veAlgm

- Acts as an ERC20 token contract which is given

to users as a representation of their staking

position in the staking contract.

This contract achieves its

intended behaviour.

Hashlock Pty Ltd



14

Code Quality
This audit scope involves the solidity smart contracts of the Algem project, as outlined

in the Audit Scope section. All contracts, libraries and interfaces mostly follow standard

best practices and to help avoid unnecessary complexity that increases the likelihood of

exploitation, however some refactoring is required.

The code is very well commented and closely follows best practice nat-spec styling. All

comments are correctly aligned with code functionality.

Audit Resources

We were given the Algem Protocol’s smart contract code in the form of Github access.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in understanding the overall architecture of the

protocol.

Dependencies
As per our observation, the libraries used in this smart contracts infrastructure are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd



15

Severity Definitions

Significance Description

High

High severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low level vulnerabilities are areas that lack best practices
that may cause small complications in the future.

Gas Gas Optimisations, issues and inefficiencies

Hashlock Pty Ltd



16

Audit Findings

High

[H-01] Malicious users can deposit after bonding period to steal rewards
from other stakers

Description

The ALGMStaking contract allows for users to stake their ALGM tokens and claim rewards
in the form of partner or ASTR tokens. These rewards accumulate over a period of time
to which users can unstake their tokens and claim their rewards; however, user rewards
will be inflated should they stake a significant amount after a certain period of time.

Vulnerability Details

When the contract calculates the quantity of ALGM staked into the contract, this value
can be added to or removed from at any point during the staking period and the
contract will believe that users have been staking that value from the beginning. This
will give exploiters an opportunity to inflate their entitled rewards by staking a
significant amount at a later date.

Impact

Theft of rewards from other users in the same pool. The proof of concept below
outlines this scenario:

function testTheftOfStakingRewards() public {
// Setup scenario
algm.mint(address(eve), 30_000 ether); // issue initial balance to the user
algm.mint(address(alice), 10_000 ether);
algm.mint(address(bob), 10_000 ether);

vm.startPrank(alice);
algm.approve(address(staking), type(uint256).max);
staking.stake(0, 10_000 ether);
vm.stopPrank();

vm.startPrank(bob);
algm.approve(address(staking), type(uint256).max);
staking.stake(0, 10_000 ether);
vm.stopPrank();

// Malicious user deposits the same amount into the staking contract using a
malicious contract

Hashlock Pty Ltd



17

vm.startPrank(eve);
algm.approve(address(staking), type(uint256).max);
staking.stake(0, 10_000 ether);
vm.stopPrank();

vm.warp(10 days); // set block timestamp to accumulate rewards

// 10 days have passed and it's time to collect rewards
vm.startPrank(address(eve));
// Claimable rewards before

(
uint256 astrQty,
IERC20[] memory tokensList,
uint256[] memory tokensQty,
bool rewardsAvailableFlag

) = staking.calculateRewards(address(eve), 0);

uint256 astrQtyBefore = astrQty;

staking.stake(0, 20_000 ether);

(
astrQty,
tokensList,
tokensQty,
rewardsAvailableFlag

) = staking.calculateRewards(address(eve), 0);

uint256 astrQtyAfter = astrQty;

vm.stopPrank();
// Asserts that staking rewards are immediately inflated

assertGt(astrQtyAfter, astrQtyBefore);

}

Recommendation

It’s recommended that user stakes are separated out into different buckets for example
stakes[poolID][staker][stakeID] which will allow each staking transaction to be handled
separately when calculating rewards. An alternative solution is to deny users from
staking if they already have ALGM tokens in the contract and when they withdraw, they
are forced to withdraw their entire stake.

Hacker’s notes

● Possibly susceptible to flashloan attacks

Hashlock Pty Ltd



18

Status
Invalid - Waiting 10 days does not generate rewards. 10 days is just an un-bonding
period during which one can not withdraw their staked ALGM.

[H-02] rpTokensQty[token] is not updated in topUpRewardsPoolFor which
will cause a dos when attempting to claim rewards

Description

The topUpRewardsPoolFor function will allow an owner to add rewards to certain ASTR or
partner tokens. Users can claim these rewards for staking their ALGM tokens in the
contract. msg.value is accounted for if ASTR tokens are used and ERC20 is used for
transferring other tokens to the contract.

Vulnerability Details

Various checks are made on the quantity and token being used to top the rewards pool
up however, rpTokensQty is not updated with the amount of qty which has been added to
the pool which effectively means, a top up never happened. Because this state variable
is heavily relied upon when calling the claimRewards function, this may cause an
underflow which will deny users from claiming their rewards.

Impact

This will create a denial of service condition against the claimRewards function.

Recommendation

It’s recommended that the rpTokensQty state variable is updated when an owner tops up
the reward pool in topUpRewardsPoolFor function.

Status
Resolved

Medium
[M-01] If a partner reward token if removed users will lose rewards

Description

The staking contract owner can add partner tokens to the protocol in order to
administer rewards in this type of token through the calculation of rewards. If an owner
deletes a partner token where there are pending rewards, the users may lose rewards
for their staking efforts.

Hashlock Pty Ltd



19

Vulnerability Details

This is due to the lack of checks when attempting to delete a partner reward token. If a
token is removed, this is not accounted for in the claimRewards and _calculateRewards

function which effectively loses the accumulated rewards of users.

Impact

Users will lose their rewards if a partner reward token is deleted.

Recommendations

Check if there are pending rewards before owners remove partner tokens.

Status

Resolved

[M-02] Time distributed reward updates are sometimes skipped

Description

The _updateTimeDistRewards function is responsible for updating the ARPS for tokens
which are distributed within TimeDistRewards. This will then delete the completed
TimeDistRewards entry from the storage of the contract; however, time distributed
rewards may be skipped.

Vulnerability Details

Because this deletes the TDR by replacing the last element with the current one then
popping the last element within a for loop, the last TDR will be missed since it’s being
moved to the current index which has already been processed.

Impact

User rewards may be skipped

Recommendations

It’s recommended that there are some additional checks on the token quantity in
addition to the timeframe and slicesDistributed to ensure that time dist reward indexes
aren’t accidentally deleted.

Hacker’s notes

● Discovered in ALGMStaking#_updateTimeDistRewards

Status

Hashlock Pty Ltd



20

Resolved

[M-03] Stake’s veAlgmQty is not reset if user unstakes all ALGM

Description

If the user unstakes their entire staked algmQty, then the veAlgmQty value inside their
stake does not get reset back to 0.

Vulnerability Details

If a user unstakes all of their ALGM tokens, then the veAlgmQty does not change if
stakedQty == unstakeQty in the unstake function. In the future once guages are
implemented, this may be exploited to have greater voting power than intended.

Impact

The user’s stake.veAlgmQty value will show that they still have veALGM even though it has
been burnt. If this value is to be used for gauge weight voting in the future, it is possible
for an exploiter to be able to vote with veALGM that they no longer hold.

Recommendations

It’s recommended that the quantity of veAlgm is updated to zero if they unstake all of
their tokens.

Hacker’s notes

● Discovered in ALGMStaking#unstake

Status

Resolved

[M-04] ALGMStaking - Precision loss due to division before multiplication

Description

There are multiple instances in ALGMStaking where division is applied before
multiplication. In particular, _updateTokenARPSinPools and _calculateVeALGM both divide
before multiplying. This results in lost rewards and veALGM.

Vulnerability Details

Because Solidity handles multiplication before division differently to division before
multiplication due to floating point errors, we instead get rounding errors. By doing the
multiplication operations first, we can mitigate the rounding related issues as much as
possible.

Hashlock Pty Ltd



21

Impact

Precision loss when attempting to calculate veAlgm tokens. This impact can be summed
up in the following example:

console.log((30 * 100 * 13) / 13)
> 3000

console.log((30 / 13) * 100 * 13)
> 2999.9999999999995

Recommendations

It’s recommended that multiplication operations are done before division operations
throughout the code base.

Status

Resolved

[M-05] If WASTR is used as a partner token the claimRewards function could
be dosed or double rewards may be claimed

Description

The claimRewards function is being used to reward users for their staking efforts through
both ASTR tokens and partner tokens. Both instances of rewards are iterated through
with a for loop with minimal checks which may cause some issues if WASTR is
accidentally added as a partner token.

Vulnerability Description

Because the claimRewards function does two for loops with minimal checks, when WASTR
token is passed to rpTokensQty when attempting to determine the ERC20 rewards, the
WASTR address could be used twice. If the rewards pool for WASTR was not funded this
could create a dos however if the rewards pool was funded with WASTR, this could
create duplicate rewards as ASTR token was transferred to the user via a call() in the
previous for loop iteration.

Impact

This could result in a denial of service condition or double claim in rewards.

Recommendations

Because the WASTR address is already considered in the state variables, it’s
recommended that owners are not allowed to add WASTR as a partner token. In
addition to this, it’s recommended that sanity checks are implemented to prevent

Hashlock Pty Ltd



22

WASTR from being transferred as an ERC20 when it was already transferred in a low
level call as native tokens in the previous iteration.

Status

Resolved

Low
[L-01] Missing sanity checks for instances of msg.value

Recommendations

Ensure that msg.value is zero so tokens are not lost.

Status

Resolved

Hacker’s Notes

● Discovered in ALGMStaking#topUpRewardsPool

[L-02] to can be set to zero address

Recommendations

If from != address(0) then to can be the zero address. It’s recommended that this edge
case is checked for.

Hacker’s notes

● Discovered in ALGMStaking/veALGM#_revertIfInvalidAddr

Status

Resolved

Gas
[G-01] Initialize calcPredicted as false

Hacker’s notes

Hashlock Pty Ltd



23

● Discovered in ALGMStaking#_calculateRewards

Status

Resolved

[G-02] Storing totalPartnerTokens is unnecessary as partnerTokens is
already stored

Hacker’s notes

● Discovered in ALGMStaking

Status

Resolved

Hashlock Pty Ltd



24

Centralisation
The project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality
but depend highly on internal team responsibility.

Hashlock Pty Ltd



25

Conclusion
After Hashlocks analysis, the Algem project seems to have a sound and well tested code

base, however our findings need to be resolved in order to achieve security. Overall,

most of the code is correctly ordered and follows industry best practices. The code is

well commented as well. To the best of our ability, Hashlock is not able to identify any

further vulnerabilities.

Hashlock Pty Ltd



26

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits are to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and

whitebox penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd



27

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contracts details are

made public.

Hashlock Pty Ltd



28

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment and functionality

(performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no

statements or warranties on security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bugfree status or any

other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds, and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee explicit

security of the audited smart contracts.

Hashlock Pty Ltd



29

About Hashlock

Hashlock is an Australian based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other web3

oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au


30

Hashlock Pty Ltd


